- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Brune, William H. (2)
-
Jenkins, Jena M. (2)
-
Miller, David O. (2)
-
Bottorff, Brandon (1)
-
Brune, William_H (1)
-
Jenkins, Jena (1)
-
Mao, Jingqiu (1)
-
McFarland, Patrick J. (1)
-
Olson, Gabrielle A. (1)
-
Price, Paige (1)
-
Ren, Xinrong (1)
-
Stevens, Philip_S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Brune, William H.; Jenkins, Jena M.; Olson, Gabrielle A.; McFarland, Patrick J.; Miller, David O.; Mao, Jingqiu; Ren, Xinrong (, Proceedings of the National Academy of Sciences)Atmospheric electrical discharges are now known to generate unexpectedly large amounts of the atmosphere’s primary oxidant, hydroxyl (OH), in thunderstorm anvils, where electrical discharges are caused by atmospheric charge separation. The question is “Do other electrical discharges also generate large amounts of oxidants?” In this paper, we demonstrate that corona formed on grounded metal objects under thunderstorms produce extreme amounts of OH, hydroperoxyl (HO 2 ), and ozone (O 3 ). Hundreds of parts per trillion to parts per billion of OH and HO 2 were measured during seven thunderstorms that passed over the rooftop site during an air quality study in Houston, TX in summer 2006. A combination of analysis of these field results and laboratory experiments shows that these extreme oxidant amounts were generated by corona on the inlet of the OH-measuring instrument and that corona are easier to generate on lightning rods than on the inlet. In the laboratory, increasing the electric field increased OH, HO 2 , and O 3 , with 14 times more O 3 generated than OH and HO 2 , which were equal. Calculations show that corona on lightning rods can annually generate OH that is 10–100 times ambient amounts within centimeters of the lightning rod and on high-voltage electrical power lines can generate OH that is 500 times ambient a meter away from the corona. Contrary to current thinking, previously unrecognized corona-generated OH, not corona-generated UV radiation, mostly likely initiates premature degradation of high-voltage polymer insulators.more » « less
-
Jenkins, Jena M.; Brune, William H.; Miller, David O. (, Journal of Geophysical Research: Atmospheres)Abstract Reaction with the hydroxyl radical (OH) is often the first step in the removal of many atmospheric pollutants. The nitrogen oxides (NOx) generated by lightning can increase the amount of HOx(HOx = OH + HO2) present in the atmosphere, but direct HOxproduction from lightning has never been quantitatively investigated in the laboratory. In this laboratory study, prodigious amounts of HOxwere generated by both visible and subvisible electrical discharges over ranges of pressure and water vapor mixing ratios relevant to the troposphere. Also measured were NO, total nitrogen oxides (NOx), ozone (O3), and OH exposure, which is the integral of the hydroxyl radical concentration over time since the discharge. HOxand OH exposure were approximately independent of pressure from 360 to 970 hPa and increased only slightly as water vapor increased from 1,000 to 8,000 parts per million volume (ppmv), while NOxwas approximately independent of both pressure and water vapor over the same ranges. These laboratory measurements of excessive HOxand OH exposure are similar to measurements of electrically generated HOxdiscovered in electrified anvil clouds during a 2012 airborne study, thus demonstrating the relevance of these laboratory results to the atmosphere and the importance of understanding the electrically generated HOxcontribution to atmospheric oxidation.more » « less
An official website of the United States government
